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correction to the Bunch-Davies state. This correction is mandatory in that it relies only

on energy conservation. The modified Bunch-Davies state leads, in turn, to an O(H/Mp)
2

modification of the primordial power spectrum of inflationary perturbations, which we

determine.
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1. Introduction

One of the most satisfying aspects of the inflationary paradigm is that the enormous struc-

tures in the present universe actually arose out of minuscule quantum fluctuations in the

far past. As the spacetime geometry of the universe during inflation was, to excellent

approximation, that of de Sitter space, this means that the large-scale structure visible

today is intimately tied to the expectation value, 〈φ2〉, of quantum fields in de Sitter space.

Moreover, through observations of the cosmic microwave background and through galaxy

surveys, we are able to indirectly probe the initial state of the universe.

Traditionally, the initial state in which the expectation values are calculated is assumed

to be the Bunch-Davies state, |BD〉. This state is chosen, firstly, because the corresponding

Green’s function resembles that of the Poincaré-invariant vacuum at short distances and,

secondly, because (for a massive scalar field) the Bunch-Davies state is invariant under the

full de Sitter isometry group. Furthermore, the expectation value of the inflaton in the

Bunch-Davies state, 〈BD|φ2|BD〉, leads to the familiar, and observationally corroborated,

scale-invariant primordial power spectrum of scalar density perturbations.

However, the assumption of the Bunch-Davies state as the initial state has recently

been questioned [1 – 9]. Several plausible alternatives for the initial state have been sug-

gested based on the anticipated behavior of quantum fields at Planckian energies [10 – 18].

Because the initial state is modified, these alternatives lead to slightly different predictions

for the primordial power spectrum. This is an exciting possibility because the signatures
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of the modified initial state may be within the realm of observational investigation [19 –

25]. Nevertheless, one drawback so far has been that the assumed behavior of the fields at

Planckian energies remains model-dependent.

In this paper, we take a different approach. We use the fact that energy must be

conserved. Energy conservation does not break down in string theory and it would be

surprising if we could not assume it during inflation. This suggests a modification of the

Bunch-Davies state, as we now argue. It is well known that an inertial observer in de Sitter

space is immersed in a bath of de Sitter radiation emanating from the de Sitter horizon [26].

The spectrum of this radiation (not to be confused with the primordial power spectrum) is,

to first approximation, thermal. Indeed, it can be shown that, in the Bunch-Davies state,

the spectrum is precisely the thermal Planck distribution characterized by the de Sitter

temperature.

In fact, however, the true spectrum cannot be precisely thermal. Instead, as is known

from parallel work on black hole radiation, implementing energy conservation modifies the

spectrum in a definite way [27, 28]. One can regard the de Sitter radiation, whose origin

is quantum-mechanical, as emerging out of virtual pairs of particles, one member of which

has materialized by tunneling across the horizon. The probability of emission of a quantum

of energy ωk is then roughly

Γk ≈ exp(−βωk) . (1.1)

That is, it is roughly thermal. However, it is not exactly thermal because the horizon

suffers a back-reaction when a particle is emitted, as a consequence of energy conservation.

In a derivation in which energy conservation is taken into account [29], the effect is that

the thermal Boltzmann factor is replaced by exp(∆S):

exp(−βωk) → exp(∆S(ωk)) , (1.2)

where S is the Bekenstein-Hawking entropy of the de Sitter horizon, and ∆S(ωk) is the

change in the entropy when a quantum of radiation with energy ωk is emitted. Since

the Bunch-Davies state resulted in a perfectly thermal spectrum, we may regard this new

modified spectrum as a consequence of a small modification of the initial state:

|BD〉 → |BD′〉 . (1.3)

In turn, we are led to a robust and explicitly calculable modification to the primordial

power spectrum of inflationary perturbations:

2π2

k3
P (k) =

∫

d3x e−i~k·~x 〈BD′|φ(~x)φ(0)|BD′〉 . (1.4)

The modification to the primordial power spectrum thus arises unavoidably by energy

conservation via a correction to the Bunch-Davies state.

This paper proceeds as follows. In section 2, we review the different vacuum choices

in de Sitter space. We also substantiate the following interesting suggestion: the Bunch-

Davies state actually appears empty, rather than thermal, to a hypothetical lightlike ob-

server. In section 3, we state the results of the tunneling derivation of de Sitter radiation. In
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section 4, we present a formalism for obtaining the modification to the Bunch-Davies state

from the modification to the thermal spectrum. In section 5, we compute the primordial

power spectrum in this modified initial state. The result, a correction of order (H/Mp)
2,

while small, is universal; as such, it is a model-independent signature of quantum gravity

in the sky.

2. Vacuum states in de Sitter space

A well known feature of quantum field theory, and one that makes itself particularly man-

ifest in curved spacetime backgrounds, is that the very definition of a particle excitation

and hence of a thermal state depends sensitively on the choice of vacuum state. In a

general curved spacetime, there is no canonical or even preferred vacuum state. However,

if a spacetime admits isometries, and, in particular, a timelike Killing vector field, then

this provides a natural means of partitioning modes into positive and negative frequency

categories and then, in line with the standard procedure in Minkowski space, associat-

ing these with annihilation and creation operators. A vacuum state can then be defined

by imposing the condition that the state be annihilated by all the annihilation opera-

tors.

In the absence of an everywhere timelike Killing vector, there is no natural choice of

vacuum state. In that case, one can apply different criteria to motivate particular choices

of vacuum. A simple choice, where possible, might be to restrict one’s interest to a region

of spacetime for which a timelike Killing vector does exist, and to use the corresponding

vacuum state. Similarly, if the spacetime admits an asymptotically Minkowskian region,

another possibility is to use the natural Poincaré vacuum in that region. Alternatively,

one could demand that the vacuum be annihilated by the generators of some symmetry

group. A vacuum state can also be deemed unphysical if it fails to satisfy certain crite-

ria. For example, if the expectation value of the stress tensor diverges at a nonsingular

point in spacetime, such as at a horizon, one would consider this grounds to reject the

underlying vacuum state. In our case, we will require a certain universal form for the

particle spectrum detected by an inertial observer, a form dictated by the conservation of

energy.

In this section, we review some of the important vacua of de Sitter space, as well as

some affiliated coordinate systems.

The Bunch-Davies state

The Bunch-Davies vacuum state, |BD〉, is usually defined using planar coordinates,

ds2 = −dt2 + e2Htdx2 =
1

(Hη)2
(

−dη2 + dρ2 + ρ2dΩ2
)

, (2.1)

where η = −e−Ht/H is conformal time. See figure 1. The mode solutions to the massless

scalar field wave equation,

uk(η, ~x) = Nk (1 + ikη) e−ikη+i~k·~x , (2.2)
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Figure 1: Penrose diagram for de Sitter space. Planar coordinates cover the shaded region. The

curves are sections of constant η and constant ρ.

are termed positive frequency modes because they satisfy

∂

∂η
uk(η, ~x) = −ikuk(η, ~x) (2.3)

in the infinite past i.e. in the η → −∞ limit. An oft-cited motivation for this boundary

condition is that, in this limit, the physical wavelength of any given mode is arbitrarily

short compared to the Hubble length, and hence any distinction between de Sitter space

and Minkowski space should be suppressed. The boundary condition (2.3) is recognized as

the standard Minkowski space boundary condition, written in de Sitter space.

Another distinguishing property of the collection of modes (2.2) is that, under an

arbitrary SO(4, 1) de Sitter transformation, the positive frequency modes each mix amongst

themselves, the negative frequency modes mix amongst themselves, but these two classes

of modes do not mix among each other. This implies, in particular, that the Bunch-Davies

vacuum state is de Sitter invariant1.

Even so, it is well known that the Bunch-Davies vacuum is not uniquely de Sitter

invariant; for massive scalar fields, there is a one-parameter family of de Sitter-invariant

vacua called α-vacua. These are related to the Bunch-Davies vacuum by choosing the

positive frequency modes to be

uα
k (η, ~x) = Auk(η, ~x) + B u∗

−k(η, ~x) , (2.4)

with A,B parameterized according to A = 1√
(1−eα+α∗)

and B = eαA. Here, α is a complex

number labeling the α-vacuum; the Bunch-Davies modes correspond to B = 0 i.e. to

α = −∞. A somewhat more transparent expression of the α modes is to introduce the

antipodal map (η, ~x) → (−η, ~x) ≡ (x) in terms of which (2.4) can be written

uα
k (x) = Auk(x) + B u−k(x) . (2.5)

1Even though, formally, no de Sitter-invariant vacuum exists for a massless scalar field [30], by assuming

a tiny but nonzero mass, we can ignore this subtlety.
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Figure 2: Penrose diagram for de Sitter space. Static coordinates cover the shaded region. The

curves are sections of constant t and constant r.

Under an arbitrary de Sitter transformation, the positive and negative frequency uα
k don’t

mix, and hence an α-vacuum state, defined by the condition that it lies in the kernel of all

annhilation operators, is also de Sitter invariant.

The static state

Another important state in de Sitter space is the static vacuum, |S〉. Consider de Sitter

space in static coordinates:

ds2 = −(1 − H2r2)dt2 + (1 − H2r2)−1dr2 + r2dΩ2 . (2.6)

See figure 2. The time coordinate here is the proper time of a static geodesic observer at

the origin and r = H−1 corresponds to the horizon in de Sitter space.

Using this time coordinate to define positive and negative frequencies leads to the static

vacuum, so called because the generator of time translations, ∂t, is a Killing vector. The

physical significance of the static vacuum is that the particular geodesic observer resting

at r = 0 sees it as empty: bk|S〉 = 0 for all k. Of course there is nothing special about this

observer, and, indeed, there exists a corresponding vacuum state for each of the infinitely

many freely falling observers that crisscross de Sitter space. The static vacuum is invariant

under SO(3) × R, i.e. under rotations and time translations, but not under the entire de

Sitter isometry group, SO(4, 1). What seems to disqualify the static vacuum as a consistent

state in de Sitter space is that the expectation value of the energy-momentum tensor blows

up as one approaches the de Sitter horizon [31].

Relation between the Bunch-Davies state and the static state

It can be shown that the Bunch-Davies state appears precisely thermal to the static observer

with temperature

T =
H

2π
. (2.7)
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The easiest way to see this is to consider the Bunch-Davies Green’s function, G(x, x′).

One sets x(τ) and x′(τ ′) to lie along a timelike geodesic with proper time τ ; the observer

moving along such a geodesic registers a thermal spectrum if two conditions hold. First,

the Green’s function needs to be periodic under a shift τ → τ + iβ (where β = T−1), and

second, the singularities of the two-point Green’s function must allow for contour integrals

that are consistent with detailed balance. In this way, it can be shown that the Bunch-

Davies state appears thermal to the static observer, and, indeed, by de Sitter symmetry,

to all timelike geodesic observers.

While the Bunch-Davies vacuum is a thermal state, the same is not true of any of the

α-vacua for α 6= −∞. For B 6= 0, the combination in (2.5) introduces additional singu-

larities for the two-point Green function in the complex plane, which in turn spoils the

thermality of the state. The α-vacua deviations from a thermal spectrum can be calcu-

lated by properly accounting for the extra singularities [32 – 34], or by using a Bogolubov

approach as illustrated in the appendix.

Perhaps, then, the best way to characterize the Bunch-Davies vacuum is its being the

unique de Sitter-invariant state that appears thermal to a freely falling observer. Indeed,

this is an accurate characterization of the Bunch-Davies state, but what is less widely

appreciated is that there are an infinity of other states that fail to meet this very same set

of criteria in the most mild of ways.

Here is what we mean. Consider a freely falling observer in de Sitter space, using static

coordinates. Since ∂t is a manifest Killing vector in these coordinates, we know that

u0 = −(1 − H2r2)
dts
dτ

(2.8)

is conserved along geodesics. Here τ is the proper time and uµ are the components of the

velocity four-vector (which should not be confused with mode functions). Let’s call the

value of this conserved quantity −E. Since u2 = −1 we also have

(

dr

dτ

)2

= E2 − (1 − H2r2) . (2.9)

Solving (2.8) and (2.9) subject to the boundary conditions ts(τ = 0) = 0, r(τ = 0) = 0 we

find

r(τ) =
1

H

√

(E2 − 1) sinh(Hτ)

ts(τ) =
1

H
tanh−1(E tanh(Hτ)) . (2.10)

When E = 1, we find that r(τ) = 0 and ts(τ) = τ , which parameterizes the worldline of

the static observer who stays put at r = 0. In contrast, notice that for any E 6= 1, ts is

invariant under τ → τ + πiH−1 while r is invariant under τ → τ + 2πiH−1.

Consider now the two-point Green’s function for a scalar field, making use of the static

vacuum, i.e. the zero-particle state as seen by a given E = 1 observer. Since this two-point

Green’s function when evaluated along a geodesic is a function of (t(τ), r(τ)), we see that

the Green’s function is invariant under τ → τ + 2πiH−1. Moreover, since in this analysis
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we have not modified the static patch Green function – we have only evaluated it along

a particular curve – we can be sure that no new singularities have been introduced (in

contrast to the case with α-vacua). Thus the periodicity of the Green’s function implies

that any freely falling observer (except for the sole such observer with E = 1) measures a

thermal spectrum of particle excitations.

In other words, the static state as defined by the static (E = 1) observer, appears to

be a thermal state for all other freely falling observers. The only freely falling observer

who does not see a thermal spectrum is the static observer at r = 0, for whom this is

the vacuum. Of course, nothing is special about this observer in our analysis; we can do

the same analysis for every other freely falling observer. Doing so, we conclude that any

freely falling observer can define a vacuum state with respect to which his or her “Unruh”

particle detector will fail to detect any particles. The Unruh detectors of all other freely

falling observers, however, will measure a thermal spectrum with the same temperature.

There is an intuitive way to understand this. Recall that, for black holes, the state

that seems empty to the infalling observer looks thermal to the outside observer. Since the

derivations are identical, this implies that, in de Sitter space, the state that seems empty

to an observer who falls through another observer’s horizon will seem thermal to the other

observer. It follows by de Sitter symmetry that the static vacuum of any observer looks

thermal to all other observers.

From the perspective of thermality, therefore, the distinction between the Bunch-

Davies vacuum and the static patch vacua just described is simply this: All freely falling

observers see the Bunch-Davies vacuum as a thermal state. All but one freely falling ob-

server sees a given static patch vacuum state as thermal. That one special observer, of

course, is the observer with respect to which the static vacuum is defined.

Heuristically, this suggests thinking about the Bunch-Davies vacuum state in the fol-

lowing way. All observers moving along timelike geodesics see the Bunch-Davies vacuum

state as thermal. As above, all but one observer sees a given static patch vacuum state as

thermal. If this one special observer should actually be moving along a lightlike trajectory,

then the odd man out – the one observer who does not see the static patch vacuum state as

thermal – would not be among the timelike observers. This suggests that one might think

of the Bunch-Davies vacuum as that state which appears empty to an observer moving

on a lightlike trajectory, but which appears thermal to all observers moving on timelike

trajectories. From this perspective, the Bunch-Davies vacuum and the static patch vacua

are all part of a single class of vacuum states, each appearing empty to one observer and

thermal to everyone else.

One clue that this heuristic picture is correct is that the light ray emanating from r = 0

in the limit η → −∞ actually travels along the η → −∞ time slice. But as η → −∞, the

Bunch-Davies state becomes the ordinary vacuum of Minkowski space. Now, it is known

that, in Minkowski space, the Poincaré-invariant vacuum is the same as the light-cone

vacuum i.e. the vacuum with respect to the Hamiltonian generating lightlike translations.

Thus the Bunch-Davies state is the same as the vacuum state for a lightlike observer. To

make this more explicit, we note that the Bunch-Davies modes become plane waves in the

far past. Picking an arbitrary spatial direction x, one expands the field operator in the
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η → −∞ limit as

φ(η, x, ~x) =

∫ ∞

0

dkx√
2π

∫ +∞

−∞

d2kT

2π

1√
2ωk

{(

a
kx,~kT

e−iωkη+ikxx+i~kT ·~xT + h.c.
)

+
(

a−kx,~kT
e−iωkη−ikxx+i~kT ·~xT + h.c.

)}

, (2.11)

where xT and kT are the transverse position and wave number. The Bunch-Davies state is

defined by akx,~kT
|BD〉 = a−kx,~kT

|BD〉 = 0. But now these modes can be written in light

cone coordinates x± = η ± x:

φ(x±, ~x) =

∫ ∞

0

dkx√
2π

∫ +∞

−∞

d2kT

2π

1√
2ωk

{(

a
kx,~kT

e−i[(ωk−kx)x++(ωk+kx)x−]+i~kT ·~xT + h.c.
)

+
(

a−kx,~kT
e−i[(ωk+kx)x++(ωk−kx)x−]+i~kT ·~xT + h.c.

)}

.(2.12)

Since (ωk ± kx) ≥ 0, the positive frequency modes defining the Bunch-Davies vacuum also

correspond to the positive frequency modes defining the light-cone vacuum. Accordingly,

since one of the light-cone coordinates x± corresponds to the affine parameter along a

lightlike trajectory, the Bunch-Davies vacuum, being equivalent to the light-cone vacuum,

also appears empty with respect to a fiducial observer traveling along a lightlike trajectory.

Formally, we can regard the transformation that takes a timelike observer into a light-

like observer as an infinite boost. Infinite boosts are not contained in the de Sitter group,

which is noncompact, but one can include them by extending the de Sitter group to include

its one-point compactification. Under the de Sitter group, the Bunch-Davies state is special

in that it is thermal to all geodesic observers. But under the compactified de Sitter group

the Bunch-Davies state is merely in the same class of states as the static vacua.

Painlevé coordinates

Painlevé coordinates [29] are a particularly useful coordinate system. The line element is

ds2 = −
(

1 − H2r2
)

dt2 − 2Hr dr dt + dr2 + r2 dΩ2 . (2.13)

These coordinates resemble static coordinates, but have the advantage that the components

of the metric and its inverse are finite at the horizon. Moreover, constant-time slices

correspond to flat Euclidean space. In fact, the time slices are equivalent to the constant-

time slices using planar coordinates. See figure 3. Indeed, Painlevé coordinates are a hybrid

of static and planar coordinates, sharing the radial coordinate of the former but the time

coordinate of the latter:

tPainleve = tplanar = tstatic +
1

2H
ln(1 − H2r2)

rPainleve = rstatic = ρplanar eHt . (2.14)

Physically, Painlevé time is the proper time of comoving observers, as Painlevé time is the

same as planar time.
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Figure 3: Penrose diagram for de Sitter space. Painlevé coordinates cover the shaded region. The

curves are sections of constant t and constant r. Also shown is a constant-time slice split into two.

What is the vacuum associated with Painlevé time? Because of the off-diagonal metric

component, the time translation vector ∂t is different from the normal vector, n, to surfaces

of constant t. Should one consider modes to be positive frequency if they have positive

eigenvalues with respect to ∂t or with respect to n? The answer follows immediately from

the Klein-Gordon inner product,

(φ1, φ2) = i

∫

Σ
dΣa(φ∗

1

←→
∂a φ2) . (2.15)

In this expression, dΣa = nadΣ is the oriented volume element of a spatial slice, Σ. The

inner product defines positive norm modes, and, since these are paired with annihilation

operators, also defines the vacuum state. As the above expression shows, positive frequency

should be defined with respect to the normal vector, n, not ∂t. But Painlevé time and

planar time are the same, and hence, so are their time-slices. It follows that the Painlevé

vacuum is precisely the Bunch-Davies state. This is important because the derivation of the

approximately thermal spectrum in the next section will imply a back-reaction modification

to the Painlevé state. So it must mean that the Bunch-Davies state is modified.

3. Deviations from thermality

In inflationary cosmology, the initial state of the universe is usually taken to be the Bunch-

Davies state. As explained above, the motivation for this choice of state is two-fold: the

state is de Sitter invariant and the corresponding Green’s function has a short-distance

behavior appropriate to Minkowski space. Now, the Bunch-Davies state is a thermal state;

an Unruh detector for a free-falling observer registers a precisely Planckian spectrum with

temperature H/2π. However, there exist quite general reasons why the initial state cannot

be strictly thermal; the Bunch-Davies state is not physical because it violates energy con-

servation. To see this, consider the closely analogous background of a Schwarzschild black

hole.

– 9 –
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At first sight, the spectrum of a black hole’s Hawking radiation is also Planckian. Yet,

for a variety of reasons, the true spectrum actually departs from pure thermality. First, a

purely thermal spectrum would have a tail extending out to infinitely high energies. But

a black hole obviously cannot emit a quantum with more energy than its own mass. Thus

there is a high-energy cut-off to the spectrum. Moreover, even at energies significantly

lower than this cut-off, the spectrum must deviate from strict thermality. This is because

the “temperature” of a black hole is a function of the mass – but the mass is different

before and after emission.

Parallel arguments apply to de Sitter space. De Sitter space has a horizon of radius

H−1. This puts an upper bound on the energy of any quantum in de Sitter space: it cannot

exceed the mass of the “Nariai black hole,” the largest black hole that can fit inside the de

Sitter horizon. Moreover, as we will see, when the de Sitter horizon emits a quantum of

energy, it shrinks, much as a black horizon does. The horizon temperature is thus affected

by the emission of the quantum so that the spectrum has small deviations from thermality

even at lower energies. This effect become more prominent at higher energies.

Finally, there is also a more fundamental reason why, in a gravitational setting, one

does not have a well-defined notion of temperature. Recall that to define a temperature

for a system, one formally places the system in contact with an infinite reservoir. But, in

the presence of gravity, no such reservoir exists: any system larger than the Jeans length

will collapse. One should therefore more properly consider the microcanonical ensemble –

in which energy is fixed – rather than the canonical ensemble (for which the temperature

is fixed).

The above arguments indicate that the Bunch-Davies state, by virtue of being precisely

thermal, cannot be quite the right state. Rather, the correct state is the one that yields

the spectrum appropriate to the microcanonical ensemble. Once we have this spectrum,

we will, in the next section, determine the state that gives rise to it; we will then calculate

the modification to the power spectrum of primordial density perturbations.

Fortunately, there already exists a treatment of de Sitter radiation [29] in a micro-

canonical framework. In this picture, de Sitter radiation arises because a virtual pair is

created on the other side of the horizon. The positive-energy member of the pair is forbid-

den outside the horizon, because, in static coordinates, the t − t component of the metric

has the opposite sign there. This positive-energy particle then tunnels across the horizon

towards the observer where, because of the flip in the sign of the metric, it becomes classi-

cally allowed. This picture of radiation as a tunneling phenomenon naturally incorporates

energy conservation because the barrier across which the particle tunnels is determined by

the change in the horizon radius. One finds [29, 35] that the probability of emission is

Γ ∼ exp(∆S) = exp
[ π

G
(r2

f − r2
i )

]

, (3.1)

where ∆S is the change in the entropy of the horizon, and ri and rf are the initial and

final positions of the horizon. As we will see, at low energies (3.1) approximates a thermal

Boltzmann factor. We note that the form of the expression, as anticipated in [36], is exactly
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the same as for black holes [28, 37]. Another appealing aspect of this result in that context

is that it is consistent with an underlying unitary quantum theory [38].2

To see that ri differs from rf , consider a single particle emitted by the de Sitter horizon.

Before emission, the spacetime is empty and is described by the line element of de Sitter

space, (2.6). Thus the initial horizon radius is simply

ri = H−1 . (3.3)

After emission, the spacetime is not pure de Sitter space because it contains a quantum

of energy ω. For simplicity, consider emission in the s-wave so that the particle is really

a spherical shell. The spherically-symmetric spacetime with energy ω is Schwarzschild-de

Sitter space. This has the line element

ds2 = −(1 − H2r2 − 2Gω/r)dt2 + (1 − H2r2 − 2Gω/r)−1dr2 + r2dΩ2 . (3.4)

The final location of the horizon is determined by setting grr to zero and solving the

resulting cubic equation for its largest root. We find

rf =
2

H
√

3
cos





1

3
arctan





√

1
27 − (GωH)2

−GωH







 , (3.5)

where the arctan takes values between π/2 and π. Equation (3.1) then implies an emission

rate of

Γ ∼ exp





π

H2G





4

3
cos2





1

3
arctan





√

1
27 − (GωH)2

−GωH







 − 1







 . (3.6)

This expression can be rendered more tractable by considering the low-energy limit GωH ¿
1. Then

Γ ≈ exp

[

−2π

H
ω

(

1 +
ωH

8πM2
p

)]

, (3.7)

where we have expressed Newton’s constant in terms of the Planck mass: M−2
p = 8πG. If

we neglect the ωH/(8πM2
p ) correction, we find a probability that is precisely the Boltzmann

factor for emission at temperature H/2π. Had there been no correction term, elementary

statistical mechanics would then have implied a spectrum with Planckian occupation num-

bers, precisely the spectrum detected by a free-falling Unruh detector in the Bunch-Davies

state.

The correction term can be regarded as a consequence of self-gravitation or, equiva-

lently, of back-reaction or energy conservation [27, 37]. In the next section, we will infer

2Were there a description of de Sitter radiation in a unitary theory of quantum gravity, one would expect

the emission rate to be given by the square of the amplitude times the phase space factor. The latter is

given by summing over the eSfinal final states and averaging over the eSinitial initial states. Thus we would

expect

Γ = |amplitude|2 × (phase space factor) ∼
eSfinal

eSinitial

= exp(∆S) , (3.2)

in accord with our expression.
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the corrected initial state that corresponds to the corrected spectrum. Note that we can

already anticipate a modification to the primordial power spectrum. From (3.7), we can

attribute an effective temperature

Teff ≈ H

2π

(

1 − ωH

8πM2
p

)

, (3.8)

so that, at typical energies, ω ∼ H, we have a modification of order (H/Mp)
2, whereas at

Planckian energies we find a modification of order H/Mp.

4. Determining the correction to the Bunch-Davies state

We will now interpret the corrections to the thermal spectrum in terms of a small mod-

ification of the initial state. Let us first explain the setup. In canonical language, the

probability for pair creation of quanta of energy ωk is

Γk =

∣

∣

∣

∣

〈out| bk b−k |in〉
〈out|in〉

∣

∣

∣

∣

2

, (4.1)

where the operators bk annihilate the out-vacuum, i.e. bk|out〉 = 0. We need to determine

what |in〉 and |out〉 refer to in the tunneling calculation. Now, that calculation was per-

formed using Painlevé coordinates3 [29, 35]. The tunneling probability is the probability to

go from empty de Sitter space to a spacetime containing a pair of particles, one on either

side of the horizon, only one of which is detected as de Sitter radiation by the observer

at r = 0. This suggests that the out-state should be related to the static vacuum |S〉, as

defined by an r = 0 observer. But, more precisely, because Painlevé coordinates cover the

full planar patch, the out-state actually splits (see Figure 3) into a tensor product:

|out〉 = |I〉 ⊗ |II〉 , (4.2)

with the state in the static region I corresponding to the static vacuum, |I〉 ∼ |S〉. That |I〉
corresponds to the static vacuum can be seen in a couple of ways. First, it is suggested by

the near-thermal result of the path integral. And second, in region I, the timelike Killing

vectors ∂tstatic and ∂tPainleve
agree, by (2.14)4. Then since the quanta in the out-state have

to be created in pairs, and because only one member of the pair ends up on each side of

the horizon, only one of the creation operators acts on the static vacuum. The other one

acts on II, on the other side of the horizon. That is, the amplitude is for the transition

|in〉 → b
(I)†
k b

(II)†
−k |out〉. Thus the probability of creating two particles in the out-state is the

same as the probability of detecting one particle in the static vacuum.

Furthermore, the in-state is, to first approximation, just the Painlevé vacuum. We

argued in section 2 that that was just the Bunch-Davies state, |BD〉. However, were the in-

state really the Bunch-Davies state, we would have obtained a precisely thermal spectrum.

3See [27] for earlier work incorporating back-reaction using a Hamiltonian formalism.
4In principle one should be able to determine the structure of the |out〉-state unambiguously from the

path integral derivation; it would be nice to show this formally.
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The not-quite thermal spectrum suggests instead that the in-state is a slightly modified

Bunch-Davies state, |BD′〉. Indeed, the effective geometry seen by a self-gravitating shell

is not pure de Sitter space, but rather Schwarzschild-de Sitter space, (3.4). This has a

slightly different Painlevé metric and is therefore associated with a slightly different state.

In summary, we have three states: |out〉, |BD〉, and |BD′〉. Moreover,

∣

∣

∣

∣

〈out| bk b−k |BD〉
〈out|BD〉

∣

∣

∣

∣

2

= e−βωk

∣

∣

∣

∣

〈out| bk b−k |BD′〉
〈out|BD′〉

∣

∣

∣

∣

2

= e∆S(ωk) , (4.3)

where the first expectation value is the standard thermal expression, and the second ex-

pectation value was derived through the tunneling calculation. Let us now use these ex-

pressions to determine the precise relationship between the Bunch-Davies state and the

modified state in terms of Bogolubov coefficients.

4.1 A general Bogolubov approach

Consider a real quantum scalar field in the planar patch of de Sitter space. Expand the

scalar field in a complete set of orthonormal momentum eigenmodes:

φ(x) =
∑

k

φk(x) , (4.4)

with k ≡ |~k|. The time coordinate is assumed to be Painlevé time (2.13), which itself is

equivalent to planar time. Define three different expansions of the same quantum field:

φk(x) = ak uk(x) + a†−k u∗
−k(x)

= a′k u′
k(x) + a′

†
−k u′∗

−k(x)

= bk vk(x) + b†−k v∗−k(x) . (4.5)

Also define three different vacuum states, each corresponding to an “empty” state in terms

of the associated annihilation operators:

ak |BD〉 = 0 , a′k|BD′〉 = 0 , bk|out〉 = 0 . (4.6)

We have in mind that these three states are the Bunch-Davies state, the modified Bunch-

Davies state, and the out-state. As in (4.2), the out-state can be written as a tensor

product of states in regions I and II; the vacuum state in region I is just the static vacuum.

The particle content of our three states will generally be nonzero with respect to

each other; Bogolubov transformations mix up the positive and negative frequency modes.

Expressing the linear decomposition for the mode functions vk(x) in terms of uk(x) or

u′
k(x) we have

vk(x) =
∑

j

[

α̃jk uj(x) + β̃jk u−j(x)∗
]

=
∑

i

[

α̃′
ik u′

i(x) + β̃′
ik u′

−i(x)∗
]

. (4.7)
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Similarly, the different creation and annihilation operators are related via

bk =
∑

j

[

α̃∗
jk aj − β̃∗

jk a†−j

]

=
∑

i

[

α̃′∗
ik a′i − β̃′∗

ik a′
†
−i

]

. (4.8)

Proper normalization of the scalar field requires that

∑

k

(

α̃ik α̃∗
jk − β̃ik β̃∗

jk

)

=
∑

k

(

α̃′
ik α̃′∗

jk − β̃′
ik β̃′∗

jk

)

= δij

∑

k

(

α̃ik β̃jk − β̃ik α̃jk

)

=
∑

k

(

α̃′
ik β̃′

jk − β̃′
ik α̃′

jk

)

= 0 . (4.9)

A general Bogolubov transformation, viewed as a matrix, can have nonvanishing off-

diagonal components. However, for our present situation, because the spatial mode-

functions are defined on the same spatial slice for all three states (4.4), we can choose

an orthonormal basis such that the Bogolubov coefficients are diagonal in k:

α̃kl ≡ α̃kδkl , β̃kj ≡ β̃kδkj , |α̃k|2 − |β̃k|2 = 1

α̃′
kl ≡ α̃′

kδkl , β̃′
kj ≡ β̃′

kδkj , |α̃′
k|2 − |β̃′

k|2 = 1 . (4.10)

We are interested in solving the following problem: Suppose we know the Bogolubov

coefficients α̃k, β̃k and α̃′
k, β̃′

k, relating the |BD〉 and |BD′〉 states to the |out〉 state. How

do we then determine the Bogolubov coefficients between the |BD〉 and |BD′〉 states? In

other words, we want to express the Bogolubov coefficients αk and βk, defined by

a′k = α∗
k ak − β∗

k a†−k (4.11)

in terms of the coefficients α̃k, β̃k and α̃′
k and β̃′

k. Since the final result will be important

for the rest of the paper, let us be as explicit as possible. Multiplying (4.8), by α̃′∗
k and its

complex conjugate by β̃′
k, and subtracting, we see that

a′k = α̃′
k bk + β̃′∗

k b†−k . (4.12)

Using (4.8), we find

a′k =
(

α̃′
kα̃

∗
k − β̃′∗

k β̃k

)

ak +
(

−α̃′
kβ̃

∗
k + β̃′∗

k α̃k

)

a†−k , (4.13)

so that, by (4.11),

α∗
k = α̃′

kα̃
∗
k − β̃′∗

k β̃k

−β∗
k = −α̃′

kβ̃
∗
k + β̃′∗

k α̃k . (4.14)

As a check, note that when |BD〉 = |BD′〉 the Bogolubov coefficients αk and βk become

trivial. Once the Bogolubov coefficients α̃′
k, β̃′

k, α̃k and β̃k are known, these expressions

allow us to immediately determine the Bogolubov coefficients relating the |BD〉 the |BD′〉
state.
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4.2 Relating the two in-states

The Bogolubov transformation guarantees that both the |BD〉 and the |BD′〉 in-state can

be realized as squeezed out-states:

|BD〉 = S̃ |out〉 , |BD′〉 = S̃′ |out〉 , (4.15)

where S̃ and S̃′ are unitary squeezing operators:

S̃ =
∏

k

(

1 − |γ̃k|2
)

1
4 exp

(

1
2 γ̃kb

†
kb

†
−k

)

. (4.16)

The other squeezing operator S̃′ is obtained by replacing γ̃k with γ̃′
k. Demanding (4.6) and

expressing the annihilation operators for |BD〉 and |BD′〉 in terms of bk and b†k, we find

γ̃k ≡ − β̃∗
k

α̃k
, γ̃′

k ≡ − β̃′∗
k

α̃′
k

. (4.17)

This is easiest to show by writing bk as d

d b†
k

in the Bogolubov transformations. We can also

show (see for instance [39, 40]) that

γ̃k =
〈out| bk b−k |BD〉

〈out|BD〉

γ̃′
k =

〈out| bk b−k |BD′〉
〈out|BD′〉 . (4.18)

In words: the two γ̃k’s are the probability amplitudes for pair-creation in the Bunch-Davies

and modified Bunch-Davies state.

Now recall that we defined the Bunch-Davies and modified Bunch-Davies state through

the absolute value of exactly these squared expectation values in (4.3). As a consequence

the absolute values squared of the Bogolubov ratios γ̃k and γ̃′
k are

|γ̃k|2 = e−βωk , |γ̃′
k|2 = e∆S(ωk) . (4.19)

Given these expressions for γ̃k and γ̃′
k we are now in a position to calculate γk ≡ − β∗

k

αk
,

using (4.14). We find

γk = γ̃k
α̃′

k

α̃′∗
k

1 − γ̃′
k/γ̃k

1 − γ̃kγ̃
′∗
k

. (4.20)

Now, multiplying one set of operators, say {bk}, by overall phases clearly does not affect

the choice of state. We can use this rescaling freedom to make α̃′
k real. (Indeed, by

further rescalings, we can also force α̃k to be real.) But to proceed, we also need to know

something about the phase of γ̃′
k. In fact, it turns out that neither γ̃′

k nor γ̃k have any

nontrivial phases; they are both real and positive.
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There are a couple of ways to see this. Generally, probability amplitudes for tunneling

— which is what the γ̃k’s represent — are real. For example, in nonrelativistic quantum

mechanics, the probability amplitude for a particle to tunnel across a potential barrier

V (x) is
ψ(xII)

ψ(xI)
= exp

(

i

∫ xII

xI

p dx

)

, (4.21)

where the momentum, p, is purely imaginary: p =
√

2m(E − V (x)). Thus there is no

nontrivial phase in the amplitude.

Moreover, one can show that if γ̃k is real and positive, then γ̃′
k must be real and positive

as well. That is, if the amplitude for tunneling without back-reaction has no phase, then

neither does the amplitude when back-reaction is incorporated. To see this, imagine the

particle or shell of energy ωk being made up of a large number, N , of smaller noninteracting

sub-shells, each of energy ωk/N . As N becomes infinite, the constituent shells have negligi-

ble energy and Hawking’s thermal formula, which neglected back-reaction, becomes exact.

The probability amplitude for emitting one of these sub-shells is then exp(−1
2βωk/N),

where β is the inverse de Sitter temperature. But now the probability amplitude for the

finite shell is just the product of the probability amplitudes for the sub-shells, taking into

account that β changes infinitesimally with each emission. Hence

γ̃′
k =

N
∏

e−
1

2
βωk/N = e−

1

2

P

βωk/N → e−
1

2

R

βdω . (4.22)

Writing dM = −dωk and invoking the first law of thermodynamics, βdM = dS, we obtain

γ̃′
k = e

1

2
∆S(ωk) . (4.23)

This is perhaps the easiest way to see that the tunneling probability had to take the form

exp(∆S). But in addition one learns that, since the infinitesimal probability amplitudes

had no phase, γ̃′
k is real and positive. As a final check, we confirm explicitly that these

arguments are borne out by considering the particle spectrum of the α-states, for which

the result is known. This is done in the appendix. We indeed find that γ̃k has no nontrivial

phase. Then, by the above arguments, neither does γ̃′
k.

Thus we can write (4.20) as

γk =
γ̃k − γ̃′

k

1 − γ̃kγ̃
′
k

. (4.24)

Plugging in (4.19) yields

γk =
e−

1
2βωk − e

1
2∆S(ωk)

1 − e−
1
2βωke

1
2∆S(ωk)

. (4.25)

As a check, we note that γk vanishes in the limit ∆S(ωk) = −βωk, i.e. the corrections due

to back-reaction vanish when ωk

Mp
→ 0.

In (3.7) we found that

∆S(ωk) ≈ −βωk

(

1 +
ωkH

8πM2
p

)

. (4.26)
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Expanding the exponential in (4.25) to lowest order in ωk/Mp, and using β = 2π/H, we

find that

γk ≈ eπ
ωk
H

e2π
ωk
H − 1

ωkH

8M2
p

. (4.27)

The energy ωk corresponds to the physical energy of the emitted quantum as measured by a

static observer at r = 0. In terms of comoving momentum, which is the natural momentum

label in planar coordinates, the physical energy ωk is related to comoving momentum by the

scale factor: ωk ∝ k
a(t) . We will need this relation in the next section, when we calculate the

primordial spectrum of inflationary perturbations using the modified Bunch-Davies state.

5. Primordial spectrum of inflationary perturbations

We have argued that the standard Bunch-Davies vacuum state needs to be modified because

it is inconsistent with energy conservation. Rather, the spectrum of perturbations should

be calculated instead in the modified state |BD′〉. Now, the standard primordial power

spectrum of inflationary perturbations is directly proportional to the massless scalar field

spectrum; the results we obtain for the scalar field therefore also pertain to the spectrum

of inflationary density perturbations, as is usual in such calculations.

Consider then an arbitrary vacuum state |X〉. Let |X〉 be annihilated by all the

annihilation operators a′k, and call the corresponding Fourier-transformed mode functions

u′
k(η). The equal-time variance of the scalar field in |X〉,

〈X|φ(~x)φ(~y)|X〉 =

∫

d3k

(2π)3
|u′

k|2 ei~k(~x−~y) , (5.1)

defines the power spectrum, 〈X|φ2|X〉 ≡
∫

d ln k P (k), of scalar field perturbations:

2π2

k3
P (k) =

∫

d3x e−i~k·~x 〈X|φ(~x)φ(0)|X〉 = |u′
k|2 . (5.2)

The well-known scale-invariant result arises when the variance is computed in the Bunch-

Davies state: |X〉 = |BD〉. We denote this by PBD ≡ k3

2π2 |uk|2. Now let |X〉 = |BD′〉, and

call P (k) the power spectrum in the modified state. From the Bogolubov transformation

u′
k(η) = αkuk(η) + βku∗

k(η) , (5.3)

it is straightforward to find the relation between the two power spectra. We know that we

can set αk to be real. Moreover, in the previous section we showed that γk ≡ −β∗
k/αk is

real. Also, write uk = |uk|eiδ. Then we conclude that

P (k) =
1

1 − γ2
k

(

1 − 2γk cos(2δ) + γ2
k

)

PBD . (5.4)

When calculating the power spectrum of inflationary perturbations one is usually instructed

to evaluate the spectrum for different k at the time of horizon crossing, corresponding to

k = a(t)H. The reason this gives the right answer is that, after horizon crossing, the
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mode-function very quickly approaches a constant. Furthermore, the Bunch-Davis mode-

functions also have the property that the phase δ is fixed and independent of k, after

imposing k = aH. We can determine δ from the expression for the Bunch-Davies modes,

(2.2). Also, since γk ¿ 1, we can write

P (k) ≈ (1 − 2γk cos(2δ))|k=aH PBD . (5.5)

Now we simply plug in the expression for γk, (4.27), to find the leading correction to the

primordial power spectrum from picking the modified Bunch-Davies vacuum |BD′〉. We

also have to impose the condition k = aH (which leads to cos(2δ) ≈ −1). As noted above,

this condition tells us to evaluate the expression for the power spectrum at the time the

physical momentum equals the Hubble scale H. Since the expression for γk is in terms of

the physical energy scale, ωk, we must set ωk = H. Thus we find

P (k) ≈ PBD

[

1 +
1

4eπ

(

H(k)

Mp

)2
]

. (5.6)

This is our final result. We have introduced a k-dependence because, in a generic slow-

roll inflationary model, H depends on k. The deviation from unity of the term in brackets

represents the contribution of the most universal quantum gravity effect – back-reaction due

to energy conservation – to the primordial power spectrum of inflationary perturbations.

6. Discussion

Our calculation shows that the inclusion of back-reaction results in a mild breaking of de

Sitter invariance with a corresponding mild effect on the CMB power spectrum. This can

be seen by noting that the Bogolubov coefficients relating the modified Bunch-Davies state

to the standard de Sitter invariant vacuum depend on the momentum scale ωk. Because the

set of all de Sitter invariant states is paramerized by k-independent Bogolubov coefficients

(the α-vacua) this necessarily implies that the modified Bunch-Davies state breaks de Sitter

invariance. Moreover, as the conservation of energy is mandatory, this observation could

perhaps have other important consequences, such as for the stability of de Sitter space.

The correction we computed can intuitively be understood as coming from a slightly

modified effective de Sitter temperature. By instead regarding the effect as a modification of

the Bunch-Davies vacuum we were able to compute the exact coefficient of the correction.

Generically, modifications to the initial state during inflation, as studied in [5, 6, 16],

give rise to a quite specific modification to the power spectrum: an oscillatory correction

with amplitude on the order of (H/M) where M is the scale at which the modification is

implemented. The fact that the power spectrum correction we compute here is not of that

form, but is instead a shift of order (H2/M2
p ) – exactly what one expects from including

higher order operators in a bulk effective field theory [41] – suggests that there may be a

bulk effective field theory description of the modification we’ve studied. In particular, a

correction of this magnitude generically arises from a Planck-scale-suppressed dimension 6

irrelevant operator; it would be interesting to study the exact details and the interpretation

in effective field theory of the operator responsible for this gravitational correction.
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Our final formula, (5.6), obviously implies a tiny correction, already highly constrained

by H/Mp ≤ 10−5. Nevertheless, the result is interesting for a couple of reasons. First, it is

unavoidable, originating as it does in energy conservation. And second, the correction can

be calculated explicitly without requiring any knowledge of new Planck scale physics. In

that sense, it is a universal imprint of quantum gravity in the large-scale structure of the

universe.
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A. Particle spectrum in the α-states

Rather than choosing the Bunch-Davies state, which gives rise to a thermal spectrum for a

free-falling timelike observer, one could just as well have picked one of the de Sitter-invariant

α-states instead. As an illustration of our general Bogolubov method we shall calculate here

the spectrum detected by an inertial observer in an α-state. We will reproduce the known

result [32 – 34], a result usually obtained by carefully analyzing the singularity structure of

the Wightman Green’s function.

Now, by definition, the operators, a′k, that annihilate an α-state are obtained from

the Bunch-Davies operators, ak, by a Bogolubov transformation,

a′k = α∗
k ak − β∗

k a†−k , (A.1)

where the Bogolubov coefficients are k-independent:

αk =
1√

1 − eα+α∗

βk =
eα

√
1 − eα+α∗

. (A.2)

Here α is a complex number, with Re(α) < 0, that labels the α-state (and is not to be

confused with the Bogolubov coefficient αk); Re(α) = −∞ corresponds to the Bunch-Davies

state.

The operators, bk, that annihilate the out-state are themselves related by a Bogolubov

transformation to the Bunch-Davies creation and annihilation operators:

bk = α̃∗
k ak − β̃∗

k a†−k . (A.3)

Now, multiplying bk by an overall phase obviously does not affect the choice of vacuum

state. Use this freedom to fix the phase so that α̃k is real. Next, express these operators

in terms of the α-state operators:

bk = α̃′∗
k a′k − β̃′∗

k a′
†
−k . (A.4)
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Then, by inverting (A.1),

ak = αk a′k + β∗
k a′

†
−k , (A.5)

and substituting into (A.3), we conclude that

α̃′∗
k = α̃∗

kαk − β̃∗
kβk

β̃′∗
k = β̃∗

kα∗
k − α̃∗

kβ
∗
k . (A.6)

Or, using (A.2),

α̃′∗
k =

1√
1 − eα+α∗

[

α̃∗
k − eαβ̃∗

k

]

β̃′∗
k =

1√
1 − eα+α∗

[

β̃∗
k − eα∗

α̃∗
k

]

. (A.7)

The spectrum is controlled by the absolute value of the parameter γ̃′
k ≡ − β̃′∗

k

α̃′
k

. Now we

use the fact that, for the thermal Bunch-Davies state, |γ̃k|2 = e−βωk . Then a little algebra

yields

|γ̃′
k|2 = e−βωk

∣

∣

∣

∣

∣

1 + eα∗
γ̃−1

k

1 + eα∗ γ̃∗
k

∣

∣

∣

∣

∣

2

. (A.8)

In section 4.2, we argued that, on general grounds, γ̃k is purely real. This allows us to

write γ̃k = exp (−1
2βωk), and we obtain

|γ̃′
k|2 = e−βωk

∣

∣

∣

∣

∣

∣

1 + eα+
1
2βωk

1 + eα−1
2βωk

∣

∣

∣

∣

∣

∣

2

, (A.9)

in perfect agreement with previously derived results [33]. (Had we not known that γ̃k was

purely real, we would have learned that by matching our result with that in the literature.)

Note incidentally that, for Re(α) 6= −∞, the spectrum is not thermal; in the limit ωk

H → ∞,

for instance, we find |γ̄k|2 = eα+α∗
, corresponding to constant occupation numbers.
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